

Kleinfelder Australia Pty Ltd
ABN: 23 146 082 500
Level 1, 95 Coventry Street
South Melbourne VIC 3205
T| 03 9907 6000 F| 03 9907 6090
www.kleinfelder.com/australia

05 June 2015

20160553.001A/TCL/MLB15L19608

Kieren McDermott Transpacific Cleanaway 46 Victory Road Clarinda, VIC

Attention: Kieren McDermott

Email: Kieren.McDermott@transpac.com.au

Subject: Flare Emission Testing Report

Tullamarine Closed Landfill

1. INTRODUCTION

Kleinfelder Australia (Kleinfelder) was commissioned by Transpacific Cleanaway Pty Ltd to report the results of emission testing undertaken at Tullamarine Closed Landfill located at the western end of Western Avenue, Westmeadows, Victoria (the site). Ektimo (EML) conducted the testing of the flare stack at the site which included laboratory analysis of the gas stream post combustion to determine emissions to air as part of exhaust gas composition. The following presents the results of the testing; screening of detectable analyte concentrations against applicable assessment criteria; and assessment of quality assurance / quality control parameters, commenting on the reliability of the data as supplied by Ektimo.

2. EMISSION TESTING

Emission testing was undertaken by Ektimo in 2015 to determine emissions to air, comprising testing at the flare stack, flare outlet and inlet line. It is noted that for the purposes of this report, only results from the flare stack/flare outlet have been considered.

Two tests were undertaken per day on 2 February 2015, 3 February 2015, 4 February 2015, 5 February 2015 and 11 February 2015, with each test running for 120 minutes. Analytical parameters for each day of testing are presented in **Table 1** below:

Table 1: Analytical Parameters

Location	Test Date	Analytes
		Dioxins and furans (PCDD and PCDF),
		polychlorinated biphenyls (PCBs), polycyclic
	2 February 2015	aromatic hydrocarbons (PAHs), organochlorine
		(OC), nitrogen oxides, carbon dioxide, carbon
Flare Stack		monoxide and oxygen.
	3 February 2015	Halides, halogens, amines, aldehydes, ammonia
	4 February 2015	Total particulate matter, metals, speciated volatile
	41 ebidary 2013	organic compounds (VOCs)
Flare Outlet	5 February 2015	Sulphuric acid, sulphur dioxide, sulphur trioxide
Flare Outlet	11 February 2015	C1-C4 hydrocarbons, sulphur gases

All sampling and analysis, with the exception of analysis of PCDDs and PCDFs, PAHs, metals and ammonia, was undertaken by Ektimo using methods as per requirements given in EPA Publication 440.1 *A Guide to the Sampling and Analysis of Air Emissions and Air Quality*. Analysis of PCDDs, PCDFs, PCBs and PAHs was undertaken by the Australian National Measurement Institute (ANMI) and analysis of metals and ammonia was undertaken by Envirolab.

Results of sample analysis including NATA accredited analytical reports are presented in the Ektimo (2015) *Emission Testing Report*, *Transpacific Cleanaway Landfills Ltd – Tullamarine* (Report Number R000541) provided as **Attachment B**.

3. QUALITY ASSURANCE/QUALITY CONTROL

All testing was undertaken using National Association of Testing Authorities (NATA) methods. A review of the appropriateness of testing methods and QA/QC program adopted by Ektimo was made by Kleinfelder with reference to EPA Publication 440.1. In general, testing by Ektimo is considered to be appropriate given that the testing program consisted of two test runs per pollutant (the minimum number of test runs required) with minimum sampling time of 120 minutes (greater than those specified for the pollutants in Table 1 of EPA Publication 440.1). Additionally, gas velocity, gas temperature, gas density, moisture and volumetric flow rate parameters were measured in accordance with EPA Publication 440.1.

Overall, Kleinfelder considered the testing methods to be appropriate and the data to be acceptable for assessment purposes.

4. REGULATORY FRAMEWORK

The State Environment Protection Policy (SEPP), Air Quality Management (AQM) (2001) and SEPP Ambient Air Quality (1999) form the framework for managing air emissions in the State of Victoria. The SEPP (Air Quality Management) establishes the framework for managing emissions of air pollutants into the air environment, such that the air quality objectives outlined in SEPP (Ambient Air Quality) are met.

The SEPP (Ambient Air Quality) also adopts the requirements of the National Environment Protection (Ambient Air Quality) Measure (NEPM). This NEPM sets standards, goals, monitoring and reporting protocols for six common pollutants: carbon monoxide (CO), nitrogen dioxide (NO₂), photochemical oxidants (as ozone), sulphur dioxide (SO₂), lead and particulate matter smaller than 10 micrometres (µm) in diameter (PM10). However, the intent of the NEPM is to be applied in a manor "such that [monitoring contributes] to obtaining a representative measure of the air quality likely to be experienced by the general population in the region or subregion." Given monitoring for this assessment was completed directly at the flare outlet, application of NEPM standards and goals is not considered directly applicable to this assessment.

5. ADOPTED ASSESSMENT CRITERIA

According to the SEPPs, the following beneficial uses are to be protected throughout Victoria:

- Life, health and well-being of humans;
- Life, health and well-being of other forms of life, including the protection of ecosystems and biodiversity;
- Local amenity and aesthetic enjoyment;
- Visibility;
- The useful life and aesthetic appearance of buildings, structures, property and materials;
 and
- Climate systems that are consistent with human development, the life, health and wellbeing of humans, and the protection of ecosystems and biodiversity.

In order to protect the beneficial uses outlined in the SEPPs, air quality indicators have been defined into the following Classes:

- Class 1: Indicators which are designated in the SEPP (Air Quality Management) as common air pollutants and includes nitrogen dioxide, sulphur dioxide, carbon monoxide, PM10 and lead. These pollutants are identified in the SEPP (Ambient Air Quality), have many sources and are widespread in the air environment.
- Class 2: Hazardous substances that may threaten the beneficial uses of the air environment by virtue of their toxicity, bioaccumulation or odour characteristics. Commonly known as air toxics, they are generally source specific. Like the Class 1 indicators, these may be widespread and therefore of regional concern, but may also be of local concern as a result of emissions from industrial sources.:
- Class 3: Extremely hazardous substances that are carcinogenic, mutagenic, teratogenic, highly toxic or highly persistent, and which may threaten the beneficial uses of the air environment. The distinction between Class 2 and 3 indicators is based on the level of toxicity and enables the appropriate level of control to be applied according to the seriousness of the possible adverse effects. Class 2 and 3 indicators are usually (but not always) of concern at a local level.; and
- *Unclassified*: Indicators of the beneficial uses of local amenity and aesthetic enjoyment, namely odour and total suspended particles (nuisance dust).

It is noted that many pollutants are both odorous and have toxic properties. Criteria have been set to protect against adverse health effects however, where a pollutant is highly odorous it may be offensive to people at relatively low concentrations where adverse health effects would not be expected. Therefore, criteria in these cases are based on the prevention of offensive odours but human health would also be protected as a consequence.

For the purposes of this assessment, Kleinfelder has screened the results obtained by Ektimo against the Environmental Quality Objectives provided in the SEPP Ambient Air Quality and the Design Criteria provided in the SEPP Air Quality Management. It should be noted that an exceedance of the SEPP criteria does not necessarily indicate an unacceptable health risk, however further assessment may be required.

It should be noted that for mixtures of chemicals (within the same chemical family), assessment is completed by calculating the toxicity equivalence (TEQ) of the mixture and screening this value against an appropriate criteria. The TEQ is calculated by multiplying the analytical result of individual chemicals within the chemical family with a toxicity weighting, or

toxicity equivalence factor (TEF). The TEF is an established value, determined for each chemical based on its individual toxicity, expressed as a ratio to the most toxic chemical in the family. For instance, for the TEQ applicable to Polycyclic Aromatic Hydrocarbons (PAHs): benzo(a)pyrene is identified as the most toxic and has a TEF of 1.0; bonzo(a)anthracene is less toxic and therefore as a TEF of 0.1. TEQs have been developed for two chemical families included as analytes within this assessment: Dioxins and Furans (I-TEQ); and PAHs (BaP-TEQ).

Table 2 below presents the applicable assessment criteria, noting that the criteria adopted are air quality, rather than air emissions criteria:

Table 2: Applicable Assessment Criteria

	3			
Analyte	SEPP (AQM) Odour (mg/m ³)	SEPP (AQM) Toxicity (mg/m ³)		
Dioxins and Furans: I-TEQ (lower ¹ , middle ² and upper ³ bound)	-	0.0037 (ng/m³)		
PAHs: BaP-TEQ (lower ¹ , middle ² and upper ³ bound)	-	730 (ng/m³)		
Carbon monoxide	-	29		
Total particulate matter	-	0.05		
Hydrogen chloride	-	0.25		
Fluoride	-	0.0029		
Chlorine	-	0.1		
Diethylamine	0.017	0.59		
Triethylamine	0.36	0.39		
Formaldehyde	-	0.4		
Acetaldehyde	0.076	5.9		
Acrolein	-	0.00077		
Arsenic	-	0.00017		
Chromium	-	0.017		
Mercury	-	0.00033		
Chloromethane	-	3.4		
Vinyl chloride	-	0.043		
Chloroethane	-	87		
Bromoform	-	0.17		
Sulphuric acid	-	0.033		
Sulphur dioxide	-	0.45		
Ethanol	3.8	63		
Chloroform	-	1.6		
1,1,1-Trichloroethane	-	23		
1,2-Dichloroethane	-	0.13		
Benzene	-	0.053		

Analyte	SEPP (AQM) Odour (mg/m³)	SEPP (AQM) Toxicity (mg/m³)
Carbon tetrachloride	-	0.021
Butanol	0.9	5.1
Trichloroethene	-	0.9
Toluene	0.65	12
1,1,2-trichloroethane	-	1.8
Tetrachloroethene	6.3	11
Chlorobenzene	0.2	1.5
Ethylbenzene	-	15
m + p-Xylene	0.35	11
Cyclohexanol	-	6.9
Styrene	0.21	6.97
o-Xylene	0.35	11
Isopropylbenzene	0.039	8.1
1,3,5-trimethylbenzene	-	4.0
1,2,4-trimethylbenzene	-	4.0
1,2,3-trimethylbenzene	-	4.0
Acetone	-	40
Pentane	-	60
Hexane	-	5.9
Methyl ethyl ketone	5.9	16
Ethyl acetate	22	24
Cyclohexane	-	35
МІВК	0.41	6.7
2-Hexanone	-	3.3
Butyl acetate	1.85	24
Cyclohexanone	0.48	3.2

Notes:

MIBK – methyl isobutyl ketone.

mg/m³ – milligrams per cubic metre

ng/m³ – nanograms per cubic metre

TEQ – Toxic Equivalent, calculated by summing applicable constituent concentrations assuming less than laboratory limit or reporting (LOR) concentrations are 1) zero; 2) half the LOR value; or 3) full LOR value.

6. RESULTS

Results from the emissions tests which exceed the adopted criteria for air quality are summarised in **Table 3** below.

Table 3: Results Exceeding Adopted Criteria

		Critoria	Concentration (mg/m³)		
Analyte	Class	Criteria (mg/m³)	Test 1 (120 min)	Test 2 (120 mins)	
Acetaldehyde (only odour criteria exceeded)	Class 2 (odour based)	0.0076	0.16	0.18	
Chromium	Class 2	0.017	0.015	0.051	
Chlorine	Class 2	0.1	0.12	0.1	
Total particulate matter	Unclassified	0.05	2.6	5.8	
Sulphur dioxide	Class 1	0.45	<0.2	1.7	
Sulphuric acid	Class 2	0.033	2.1	1.6	

The following were detected above the laboratory limit of reporting however below applicable TEQ criteria:

- Dioxins & furans: 1,2,3,4,6,7,8-HpCDF; 1,2,3,4,6,7,8-HpCDD; OCDD; Total TCDF isomers; Total PeCDF isomers; Total HxCDF isomers; Total HxCDD isomers; Total HpCDD isomers.
- PAHs: Naphthalene; Phenanthrene; Fluoranthene; Pyrene.

Dioxins & furans and PAHs are considered adequately assessed (through screening of the relevant TEQs).

The following analytes were detected above the laboratory limit of reporting however no applicable criteria were available for screening:

- Gases: Nitrogen oxides (as NO₂); Carbon dioxide; Oxygen;
- Hydrogen fluoride;
- Aldehydes & Ketones: Propionaldehyde; n-Butraldehyde;
- Total VOCs; and
- Sulphur trioxide.

It is understood the above will be assessed in future ambient air monitoring conducted at the site. All emission test results are presented in **Attachment B**.

7. CONCLUSIONS

Emission samples collected from the flare stack/outlet at the Tullamarine Close Landfill indicate concentrations of Acetaldehyde (odour), chromium, chlorine, total particulate matter, sulphur dioxide and sulphuric acid were detected above sensitive screening criteria adopted for air quality. All other analytes were reported below assessment criteria, below laboratory detection limit or no assessment criteria are available. Exceedances of the assessment criteria may require further assessment, Kleinfelder understands fate and transport modelling of flare emissions is currently being undertaken at the site; and ambient air quality sampling is proposed to be completed on 'Buffer Land' located adjacent to the east of the site.

If you require additional information or clarification, please contact the undersigned at (03) 9907 6000.

Sincerely,

Kleinfelder Australia Pty Ltd

Rebekah Fynnaart

Environmental Scientist

Tim Russell

Senior Principal

ATTACHMENTS

Attachment A: Emissions Testing Analytical Results

Attachment B: Ektimo (2015) Emission Testing Report Transpacific Cleanaway

Landfills Ltd - Tullamarine

Attachment C: Limitations

ATTACHMENT A: EMISSIONS TESTING ANALYTICAL RESULTS

Attachment A

Emissions Testing Analytical Results
Closed Tullamarine Landfill, Western Avenue, Westmeadows

	Analyte	Units	SEPP (AQM) Odour	SEPP (AQM) Toxicity	averaging time	Test 1	Test 2
	,		CE. 1 (Melvi) Guoui	oz. r (rizin) Toxicity		Jan-2015	Jan-2015
	HCB Heptachlor	mg/m3 mg/m3				< 0.00009 < 0.00009	< 0.00009 < 0.00009
	Heptachlor expoxide	mg/m3				< 0.00009	< 0.00009
	Aldrin	mg/m3				< 0.00009	< 0.00009
	gamma-BHC (Lindane)	mg/m3				< 0.00009 < 0.00009	< 0.00009 < 0.00009
	alpha-BHC beta-BHC	mg/m3 mg/m3				< 0.00009	< 0.00009
Isokinetic	delta-BHC	mg/m3				< 0.00009	< 0.00009
	trans-Chlordane	mg/m3				< 0.00009	< 0.00009
	cis-Chlordane Oxychlordane	mg/m3 mg/m3				< 0.00009 < 0.00009	< 0.00009 < 0.00009
Isokinetic	Dieldrin	mg/m3				< 0.00009	< 0.00009
	pp-DDE	mg/m3				< 0.00009	< 0.00009
	pp-DDD	mg/m3				< 0.00009	< 0.00009
	pp-DDt Endrin	mg/m3 mg/m3				< 0.00009 < 0.00009	< 0.00009 < 0.00009
	Endrin Aldehyde	mg/m3				< 0.00009	< 0.00009
	Endrin Ketone	mg/m3				< 0.00009	< 0.00009
	Alpha-Endosulfan	mg/m3				< 0.00009	< 0.00009
	beta-Endosulfan Endosulfun Sulfate	mg/m3 mg/m3				< 0.00009 < 0.00009	< 0.00009 < 0.00009
	Methoxychlor	mg/m3				< 0.00009	< 0.00009
	Arsenic	mg/m3		0.00017	3m	< 0.002	< 0.002
Metals	Chromium	mg/m3		0.017	3m	0.015	0.051
	Mercury Sulfuric acid	mg/m3 mg/m3		0.00033 0.033	3m 3m	< 0.0002 2.1	< 0.0002 1.6
Sulfur Compounds	Sulfur trioxide	mg/m3				1.2	1.1
	Sulfur dioxide	mg/m3		0.45	1h	< 0.2	1.7
	2,3,7,8-TCDF	ng/m3				< 0.0002	< 0.00009
	2,3,7,8-TCDD 1,2,3,7,8-PeCDF	ng/m3 ng/m3				< 0.0007 < 0.00004	< 0.002 < 0.0009
	2,3,4,7,8-PeCDF	ng/m3 ng/m3				< 0.0004	< 0.0004
	1,2,3,7,8-PeCDD	ng/m3				< 0.0009	< 0.0004
	1,2,3,4,7,8-HxCDF	ng/m3				< 0.00007	< 0.0002
	1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ng/m3 ng/m3				< 0.00003 < 0.00004	< 0.00009 < 0.00008
	1,2,3,7,8,9-HxCDF	ng/m3				< 0.00004	< 0.00003
	1,2,3,4,7,8-HxCDD	ng/m3				< 0.00009	< 0.00009
Dioxins & Furans	1,2,3,6,7,8-HxCDD	ng/m3				< 0.00007	< 0.00008
	1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF	ng/m3 ng/m3				< 0.00007 < 0.000009	< 0.00007 0.000023
	1,2,3,4,7,8,9-HpCDF	ng/m3				< 0.00002	< 0.00003
	1,2,3,4,6,7,8-HpCDD	ng/m3				0.000018	0.000015
	OCDF	ng/m3				< 0.0000009	< 0.0000007
	OCDD Total TCDF isomers	ng/m3 ng/m3				0.000008	0.000009
	Total TCDD isomers	ng/m3				0.0018	0.0041
	Total PeCDF isomers	ng/m3				< 0.006	0.0081
	Total PeCDD isomers	ng/m3				< 0.009	< 0.005 0.0081
	Total HxCDF isomers Total HxCDD isomers	ng/m3 ng/m3				< 0.005 < 0.003	0.0081
	Total HpCDF isomers	ng/m3				< 0.003	0.0025
	Total HpCDD isomers	ng/m3				0.0036	0.0032
	Total PCDD + PCDF's I-TEQ (Lower Bound)	ng/m3 ng/m3		0.0037	 3m	0.042	0.07 0.000047
	I-TEQ (Middle Bound)	ng/m3		0.0037	3m	0.0003	0.00047
	I-TEQ (Upper Bound)	ng/m3		0.0037	3m	0.0026	0.0034
	Naphthalene	ng/m3				2,300	2,700
	2-Methylnaphthalene Acenaphthylene	ng/m3 ng/m3				< 300 < 580	< 300 < 590
	Acenaphthene	ng/m3 ng/m3				< 30	< 30
	Fluorene	ng/m3				< 59	< 60
	Phenanthrene	ng/m3				58	73
	Anthracene Fluoranthene	ng/m3 ng/m3				< 17 44	< 17 80
	Pyrene	ng/m3				36	70
	Benz(a)anthracene	ng/m3				< 17	< 17
	Chrysene Renze(h)fluorenthene	ng/m3				< 17	< 17 < 17
PAH's	Benzo(b)fluoranthene Benzo(k)fluoranthene	ng/m3 ng/m3				< 17 < 17	< 17 < 17
	Benzo(e)pyrene	ng/m3				< 17	< 17
	Benzo(a)pyrene	ng/m3				< 17	< 17
	Perylene	ng/m3				< 17	< 17
	Indeno(1,2,3-cd)pyrene Dibenz(ah)anthracene	ng/m3 ng/m3				< 17 < 17	< 17 < 17
	Benzo(ghi)perylene	ng/m3				< 17	< 17
	Total 16 PAH's	ng/m3			3m	140	220
	Total 19 PAH's	ng/m3		 720	3m 	2,400	3,000
	BaP-TEQ (Lower Bound) BaP-TEQ (Middle Bound)	ng/m3 ng/m3		730 730		0.0 15	0.0 15
	BaP-TEQ (Upper Bound)	ng/m3		730		31	31
	Nitrogen oxides (as NO2)	mg/m3				38	53
Gases	Carbon monoxide	mg/m3		29	1h	< 2.5	< 2.5
	Carbon dioxide Oxygen	% %				6.7 9.8	7.9 12
	Total particulate matter	mg/m3		0.05	1h	2.6	5.8
	Hydrogen fluoride	mg/m3				< 0.02	0.034
Holidee 9 Hele	Hydrogen chloride	mg/m3		0.25	3m	< 0.02	0.056
Halides & Halogens	Hydrogen bromide Fluoride	mg/m3 mg/m3		0.0029	 24h	< 0.02 < 0.02	< 0.02 < 0.01
	Chlorine	mg/m3		0.0029	3m	0.12	0.01
	Bromine	mg/m3				< 0.02	< 0.01

Attachment A

Emissions Testing Analytical Results
Closed Tullamarine Landfill, Western Avenue, Westmeadows

	Analyte	Units	SEPP (AQM) Odour	SEPP (AQM) Toxicity	averaging time	Test 1 Jan-2015	Test 2 Jan-2015
	n-Butylamine	mg/m3				< 1.9	< 1.9
	Cyclohexylamine	mg/m3				< 1.9	< 1.9
	Dibutylamine Diethylamine	mg/m3 mg/m3	0.017	0.59	 3m	< 1.9 < 1.9	< 1.9 < 1.9
	Dimethylamine	mg/m3				< 1.9	< 1.9
Amines	Dipropylamine	mg/m3				< 1.9	< 1.9
	n-Heptylamine n-Hexylamine	mg/m3 mg/m3				< 1.9 < 1.9	< 1.9 < 1.9
	Monoisopropylamine	mg/m3				< 1.9	< 1.9
	n-Propylamine Triethylamine	mg/m3 mg/m3	0.36	0.39	 3m	< 1.9 < 3.7	< 1.9 < 3.7
	Formaldehyde	mg/m3		0.4	3m	< 0.07	0.19
	Acetaldehyde	mg/m3	0.076	5.9	3m	0.16	0.18
Aldehydes & Ketones	Acrolein Propionaldehyde	mg/m3 mg/m3		0.00077	3m 	< 0.07 0.17	< 0.08 0.36
·	n-Butraldehyde	mg/m3				< 0.07	0.37
	Valeraldehyde Hexanal	mg/m3 mg/m3				< 0.07 < 0.07	< 0.08
	Chloromethane	mg/m3		3.4	3m	< 0.001	< 0.001
	Vinyl chloride	mg/m3		0.043	3m	< 0.0008	< 0.0006
	Naphthalene Bromomethane	mg/m3 mg/m3				0.017 < 0.009	< 0.01 < 0.01
	Chloroethane	mg/m3		87	3m	< 0.0006	< 0.0006
	trans-1,2-Dichloroethene 1,1-Dichloroethane	mg/m3 mg/m3				< 0.4	< 0.4 < 0.0009
	cis-1,2-Dichloroethene	mg/m3				< 0.4	< 0.4
VOC's [TO-15]	Bromodichloromethane	mg/m3				< 0.002	< 0.002
7000[10 10]	cis-1,3-Dichloropropen trans-1,3-Dichloroprop	mg/m3 mg/m3				< 0.0010 < 0.0010	< 0.0010 < 0.0010
	Dibromochloromethane	mg/m3				< 0.002	< 0.002
	1,2-Dibromoethane Bromoform	mg/m3 mg/m3		0.17	 3m	< 0.002 < 0.002	< 0.002 < 0.002
	1,3-Dichlorobenzene	mg/m3				< 0.001	< 0.003
	1,2-Dichlorobenzene 1,2,4-Trichlorobenzene	mg/m3				< 0.001 < 0.002	< 0.001 < 0.003
	1,2,4-1 ricniorobenzene Hexachlorobutadiene	mg/m3 mg/m3				< 0.002	< 0.003
	Ethanol	mg/m3	3.8	63	3m	< 0.4	< 0.4
	Isopropanol 1,1-Dichloroethene	mg/m3 mg/m3				< 0.4	< 0.4 < 0.4
	Dichloromethane	mg/m3				< 0.4	< 0.4
	Chloroform Isobutanol	mg/m3 mg/m3		1.6	3m 	< 0.4	< 0.4 < 0.4
	1,1,1-Trichloroethane	mg/m3		23	3m	< 0.4	< 0.4
	1,2-Dichloroethane Benzene	mg/m3 mg/m3		0.13 0.053	3m 3m	< 0.4 < 0.4	< 0.4 < 0.4
	Carbon tetrachloride	mg/m3		0.053	3m	< 0.4	< 0.4
	Butanol	mg/m3	0.9	5.1	3m	< 0.4	< 0.4
	1-Methoxy-2-propanol Trichloroethene	mg/m3 mg/m3		0.9	 3m	< 0.4	< 0.4
	Toluene	mg/m3	0.65	12	3m	< 0.4	< 0.4
	1,1,2-trichloroethane Tetrachloroethene	mg/m3 mg/m3	6.3	1.8 11	3m 3m	< 0.4	< 0.4
	Chlorobenzene	mg/m3	0.2	1.5	3m	< 0.4	< 0.4
	Ethylbenzene	mg/m3	0.25	15	3m	< 0.4	< 0.4
	m + p-Xylene Cyclohexanol	mg/m3 mg/m3	0.35	6.9	3m 3m	< 0.4 < 0.4	< 0.4 < 0.4
	Styrene	mg/m3	0.21	6.97	3m	< 0.4	< 0.4
	o-Xylene 2-Butoxyethanol	mg/m3 mg/m3	0.35	11	3m 	< 0.4	< 0.4 < 0.4
	1,1,2,2-Tetrachloroethane	mg/m3				< 0.4	< 0.4
	Isopropylbenzene Propylbenzene	mg/m3 mg/m3	0.039	8.1	3m 	< 0.4	< 0.4 < 0.4
	1,3,5-trimethylbenzene	mg/m3		4.0	3m	< 0.4	< 0.4
	alpha-Methylstyrene	mg/m3				< 0.4 < 0.4	< 0.4 < 0.4
	tert-Butylbenzene 1,2,4-trimethylbenzene	mg/m3 mg/m3		4.0	 3m	< 0.4	< 0.4
	1,2,3-trimethylbenzene	mg/m3		4.0	3m	< 0.4	< 0.4
	m-Diethylbenzene p-Diethylbenzene	mg/m3 mg/m3				< 0.4 < 0.4	< 0.4 < 0.4
	o-Diethylbenzene	mg/m3				< 0.4	< 0.4
VOC's (speciated)	Acetone Pentane	mg/m3 mg/m3		40 60	3m 3m	< 0.4 < 0.4	< 0.4 < 0.4
	Hexane	mg/m3		5.9	3m	< 0.4	< 0.4
	Methyl ethyl ketone Ethyl acetate	mg/m3 mg/m3	5.9 22	16 24	3m 3m	< 0.4 < 0.4	< 0.4 < 0.4
	Cyclohexane	mg/m3		35	3m	< 0.4	< 0.4
	2-Methylhexane	mg/m3				< 0.4 < 0.4	< 0.4 < 0.4
	2,3-Dimethylpentane Isopropyl acetate	mg/m3 mg/m3				< 0.4	< 0.4
	3-Methylhexane	mg/m3				< 0.4	< 0.4
	Isooctane Heptane	mg/m3 mg/m3				< 0.4 < 0.4	< 0.4 < 0.4
	Propyl acetate	mg/m3				< 0.4	< 0.4
	Methylcyclohexane MIBK	mg/m3 mg/m3	 0.41	6.7	 3m	< 0.4 < 0.4	< 0.4 < 0.4
	2-Hexanone	mg/m3		3.3	3m	< 0.4	< 0.4
	Octane Butyl acetate	mg/m3 mg/m3	 1.85	 24	 3m	< 0.4 < 0.4	< 0.4 < 0.4
	1-methoxy-2-propyl acetate	mg/m3				< 0.4	< 0.4
	Cyclohexanone Nonane	mg/m3	0.48	3.2	3m	< 0.4 < 0.4	< 0.4 < 0.4
	Cellosolve acetate	mg/m3 mg/m3				< 0.4	< 0.4
	alpha-Pinene	mg/m3				< 0.4	< 0.4
	beta-Pinene Decane	mg/m3 mg/m3				< 0.4 < 0.4	< 0.4 < 0.4
	3-Carene	mg/m3				< 0.4	< 0.4
	D-Limonene 2-Butoxyethyl acetate	mg/m3 mg/m3				< 0.4 < 0.4	< 0.4 < 0.4
	Undecane	mg/m3				< 0.4	< 0.4
	Isophorone Ethyl diglycol acotato	mg/m3				< 0.4	< 0.4
	Ethyl diglycol acetate Dodecane	mg/m3 mg/m3				< 0.4 < 0.4	< 0.4 < 0.4
	Tridecane	mg/m3				< 0.4	< 0.4
	Tetradecane Residuals as Toluene	mg/m3 mg/m3				< 0.4 < 0.4	< 0.4 < 0.4
		mg/m3				0.017	< 0.4
	VOCs [TO-15 Canisters]	mg/mo					
Total VOC's	Sorbent tubes Total	mg/m3 mg/m3				< 0.4 0.017	< 0.4 < 0.4

ATTACHMENT B: EKTIMO (2015) EMISSION TESTING REPORT TRANSPACIFIC CLEANAWAY LANDFILLS LTD – TULLAMARINE

Address (Head Office) 427 Canterbury Road, SURREY HILLS VIC 3127

Postal Address Unit 3, 4 Monash Gate, JANDAKOT WA 6164 Office Locations
VIC NSW WA QLD

Freecall: 1300 364 005 Int'l Call: +61 3 9813 7200 www.ektimo.com.au ABN: 86 600 381 413

Report Number R000541

Emission Testing Report Transpacific Cleanaway Landfills Ltd - Tullamarine

Document Information

Client Name: Transpacific Cleanaway Landfills Ltd - Tullamarine

Report Number: R000541

Report Title: Emission Testing Report

Date of Issue: 27 May 2015

Attention: Kieren McDermott

Address: Western Avenue

TULLAMARINE VIC 3043

Sampling Information

Sampling Date: February and March 2015

Sampling Team: GS/JS/MH

Testing Laboratory: Ektimo (EML) ABN 98 006 878 342

Report Status

Format	Document Number	Report Date	Prepared By	Reviewed By (1)	Reviewed By (2)
Preliminary Report	-	-	-	-	-
Draft Report	R000541draft	26 March 2015	JW/AD	GS	MR
Draft Report 2	R000541draft2	29 April 2015	JW/AD	GS	MR
Final Report	R000541	27 May 2015	JW/AD	GS	MR
Amend Report	-	-	-	-	-

Amendment Record

Document Number	Initiator	Report Date	Section	Reason
Nil	_	-	-	-

Report Authorisation

Client Manager Greg Sceneay NATA Accredited Laboratory No. 2732

Compliance Manager Melissa Reddan BAppSc

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced except in full.

Table of Contents

1	Executive Summary
2	Results5
3	Plant Operating Conditions
4	Test Methods
5	Quality Assurance/ Quality Control Information
6	Definitions
List	of Tables
Flare Inlet	Ing Summary

Appendices

Appendix 1: NMI Dioxins and furans (PCDD & PCDF) report

Appendix 2: NMI Polycyclic aromatic hydrocarbons (PAH's) report

1 EXECUTIVE SUMMARY

Tests were performed at the request of Transpacific Cleanaway Landfills Ltd (Tullamarine) to determine emissions to air as detailed below;

Testing Summary

Location	Test Date	Test Parameters*
Flare Outlet	2 February 2015	Dioxins and furans (PCDD & PCDF), polycyclic aromatic hydrocarbons (PAH's), organochlorine (OC), nitrogen oxides, carbon dioxide, carbon monoxide, oxygen
	3 February 2015	Halides, halogens, amines, aldehydes, ammonia,
	4 February 2015	Total particulate matter, metals, speciated volatile organic compounds (VOC's),
	5 February 2015	Sulfuric acid, sulfur dioxide, sulfur trioxide
	31 March 2015	C ₁ -C ₄ Hydrocarbons, sulfur gases
Inlet Line	4 February 2015	Speciated volatile organic compounds (VOC's)
	31 March 2015	C ₁ -C ₄ Hydrocarbons, sulfur gases

^{*} Flow rate, velocity, temperature and moisture were determined unless otherwise stated.

2 RESULTS

Flare Outlet - Test Results

 Date
 2/02/2015
 Client
 Transpacific Cleanaway

 Report
 R000541
 Stack ID
 Flare Outlet

Licence No. - Location Tullamarine State VIC

Ektimo Staff JS/MH/GS

Process Conditions Normal operation @ 180 sm3/hr

Reason for testing: Client requested testing to determine emissions to air

Sampling Plane Details Sampling plane dimensions (mm) & area 800 0.503 m² Sampling port size, number & depth 4" Flange (x2) 300 mm Access & height of ports Fixed ladder 8 m Duct orientation & shape Vertical Circular Downstream disturbance Exit 2D Upstream disturbance Connection 6 D No. traverses & points sampled 2 12 Traverse method & compliance AS4323.1 Satisfactory

Comments

All results reported on a dry basis at NTP

Stack Parameters			
Moisture content, %/v	10		
Gas molecular weight, g/g mole	28.5 (wet)	29.7 (dry)	
Gas density at NTP, kg/ m²	1.27 (wet)	1.33 (dry)	
	Test1	Test2	
Gas Flow Parameters			
Temperature, °C	1025	1025	
Velocity at sampling plane, m/s	6.5	6.5	
Volumetric flow rate, discharge, m³/ min	200	200	
Volumetric flow rate (wet NTP), m³/ min	42	42	
Volumetric flow rate (dry NTP), m³/ min	37	37	
Mass flow rate (wet basis), kg/hour	3200	3200	
Sampling time, min	120	120	
Isokinetic rate, %	110	109	
Velocity difference, %	4	4	

Isokinetic	Aver	age	Test 1		Test2		
Sampling time			1346-	1346-1550		1346-1550	
	Concentration mg/m³	Mass Rate g/min	Concentration mg/m³	Mass Rate g/min	Concentration mg/m³	Mass Rate g/min	
HCB	<0.000085	<3.2 E-06	<0.000085	<3.2 E-06	<0.000086	<3.2 E-06	
Heptachlor	<0.000085	<3.2 E-06	<0.000085	<3.2 E-06	<0.000086	<3.2 E-06	
Heptachlor expoxide	<0.000085	<3.2 E-06	<0.000085	<3.2 E-06	<0.000086	<3.2 E-06	
Aldrin	<0.000085	<3.2 E-06	<0.000085	<3.2 E-06	<0.000086	<3.2 E-06	
gamma-BHC (Lindane)	<0.000085	<3.2 E-06	<0.000085	<3.2 E-06	<0.000086	<3.2 E-06	
alpha-BHC	<0.000085	<3.2 E-06	<0.000085	<3.2 E-06	<0.000086	<3.2 E-06	
beta-BHC	<0.000085	<3.2 E-06	<0.000085	<3.2 E-06	<0.000086	<3.2 E-06	
delta-BHC	<0.000085	<3.2 E-06	<0.000085	<3.2 E-06	<0.000086	<3.2 E-06	
trans-Chlordane	<0.000085	<3.2 E-06	<0.000085	<3.2 E-06	<0.000086	<3.2 E-06	
cis-Chlordane	<0.000085	<3.2 E-06	<0.000085	<3.2 E-06	<0.000086	<3.2 E-06	
Oxychlordane	<0.000085	<3.2 E-06	<0.000085	<3.2 E-06	<0.000086	<3.2 E-06	
Dieldrin	<0.000085	<3.2 E-06	<0.000085	<3.2 E-06	<0.000086	<3.2 E-06	
pp-DDE	<0.000085	<3.2 E-06	<0.000085	<3.2 E-06	<0.000086	<3.2 E-06	
pp-DDD	<0.000085	<3.2 E-06	<0.000085	<3.2 E-06	<0.000086	<3.2 E-06	
pp-DDt	<0.000085	<3.2 E-06	<0.000085	<3.2 E-06	<0.000086	<3.2 E-06	
Endrin	<0.000085	<3.2 E-06	<0.000085	<3.2 E-06	<0.000086	<3.2 E-06	
Endrin Aldehyde	<0.000085	<3.2 E-06	<0.000085	<3.2 E-06	<0.000086	<3.2 E-06	
Endrin Ketone	<0.000085	<3.2 E-06	<0.000085	<3.2 E-06	<0.000086	<3.2 E-06	
Alpha-Endosulfan	<0.000085	<3.2 E-06	<0.000085	<3.2 E-06	<0.000086	<3.2 E-06	
beta-Endosulfan	<0.000085	<3.2 E-06	<0.000085	<3.2 E-06	<0.000086	<3.2 E-06	
Endosulfun Sulfate	<0.000085	<3.2 E-06	<0.000085	<3.2 E-06	<0.000086	<3.2 E-06	
Methoxychlor	<0.000085	<3.2 E-06	<0.000085	<3.2 E-06	<0.000086	<3.2 E-06	

Flare Outlet

Date2/02/2015ClientTranspacific Cleanaway

Licence No. - Location Tullamarine State VIC

Stack ID

Ektimo Staff JS/MH/GS

R000541

Report

Process Conditions Normal operation @ 180 sm3/hr

Reason for testing: Client requested testing to determine emissions to air

Dioxins & Furans	Aver	age	Tes	st 1	Tes	st 2
Sampling time			1346-	1550	1346-	1550
	Concentration ng/m³	Mass Rate ng/min	Concentration ng/m³	Mass Rate ng/min	Concentration ng/m³	Mass Rate ng/min
2,3,7,8-TODF	<0.00013	<0.0048	<0.00017	< 0.0063	<0.000086	<0.0032
2,3,7,8-TCDD	< 0.0012	< 0.045	<0.00068	< 0.025	<0.0017	<0.064
1,2,3,7,8-PeCDF	< 0.000064	< 0.0024	<0.000042	< 0.0016	<0.000086	<0.0032
2,3,4,7,8-PeCDF	< 0.00043	< 0.016	<0.00042	<0.016	< 0.00043	<0.016
1,2,3,7,8-PeCDD	< 0.00064	< 0.024	<0.00085	< 0.032	< 0.00043	<0.016
1,2,3,4,7,8-HxCDF	< 0.00012	< 0.0045	<0.000068	< 0.0025	<0.00017	<0.0064
1,2,3,6,7,8-HxCDF	<0.00006	< 0.0022	<0.000034	< 0.0013	<0.000086	<0.0032
2,3,4,6,7,8-HxCDF	<0.00006	< 0.0022	<0.000042	< 0.0016	<0.000077	<0.0029
1,2,3,7,8,9-HxCDF	< 0.000034	< 0.0013	<0.000034	< 0.0013	< 0.000034	<0.0013
1,2,3,4,7,8-HxCDD	<0.000085	< 0.0032	<0.000085	< 0.0032	<0.000086	<0.0032
1,2,3,6,7,8-HxCDD	< 0.000072	< 0.0027	<0.000068	< 0.0025	<0.000077	<0.0029
1,2,3,7,8,9-HxCDD	<0.000068	< 0.0025	<0.000068	< 0.0025	<0.000068	<0.0026
1,2,3,4,6,7,8-HpCDF	< 0.000016	< 0.00059	<8.5 E-06	< 0.00032	0.000023	0.00086
1,2,3,4,7,8,9-HpCDF	<0.000026	< 0.00095	<0.000017	< 0.00063	< 0.000034	<0.0013
1,2,3,4,6,7,8-HpCDD	0.000016	0.0006	0.000018	0.00066	0.000015	0.00054
OCDF	<7.7 E-07	<0.000029	<8.5 E-07	<0.000032	<6.8 E-07	<0.000026
OCDD	8.8 E-06	0.00033	8.2 E-06	0.00031	9.4 E-06	0.00035
Total TCDF isomers	0.03	1.1	0.029	1.1	0.032	1.2
Total TCDD isomers	0.0029	0.11	0.0018	0.066	0.0041	0.15
Total PeCDF isomers	<0.007	<0.26	<0.0059	<0.22	0.0081	0.3
Total PeCDD isomers	<0.0068	<0.25	<0.0085	< 0.32	<0.0051	<0.19
Total HxCDF isomers	<0.0066	<0.25	<0.0051	<0.19	0.0081	0.3
Total HxCDD isomers	<0.0026	<0.099	<0.0025	<0.095	0.0027	0.1
Total HpCDF isomers	<0.0025	<0.094	<0.0025	<0.095	0.0025	0.093
Total HpCDD isomers	0.0034	0.13	0.0036	0.14	0.0032	0.12
Total PCDD + PCDFs	0.056	2.1	0.042	1.6	0.07	2.6
I-TEQ						
Lower Bound	0.000037	0.0014	0.000026	0.00097	0.000047	0.0018
Middle Bound	0.0015	0.057	0.0013	0.049	0.0017	0.065
Upper Bound	0.003	0.11	0.0026	0.097	0.0034	0.13

Date2/02/2015ClientTranspacific Cleanaway

 Report
 R000541
 Stack ID
 Flare Outlet

 Licence No. Location
 Tullamarine
 State VIC

Ektimo Staff JS/MH/GS

Process Conditions Normal operation @ 180 sm3/ hr

Reason for testing: Client requested testing to determine emissions to air

PAH's	Aver	age	Tes	st 1	Tes	st 2
Sampling time			1346-	1550	1346-	1550
	Concentration ng/m³	Mass Rate ng/min	Concentration ng/m³	Mass Rate ng/min	Concentration ng/m³	Mass Rate ng/min
Naphthalene	2500	94000	2300	85000	2700	1.0 E+05
2-Methylnaphthalene	<300	<11000	<300	<11000	<300	<11000
Acenaphthylene	<590	<22000	<580	<22000	<590	<22000
Acenaphthene	<30	<1100	<30	<1100	<30	<1100
Fluorene	<60	<2200	<59	<2200	<60	<2200
Phenanthrene	65	2400	58	2100	73	2700
Anthracene	<17	<640	<17	<630	<17	<640
Fluoranthene	62	2300	44	1600	80	3000
Pyrene	53	2000	36	1400	70	2600
Benz(a)anthracene	<17	<640	<17	<630	<17	<640
Chrysene	<17	<640	<17	<630	<17	<640
Benzo(b)fluoranthene	<17	<640	<17	<630	<17	<640
Benzo(k)fluoranthene	<17	<640	<17	<630	<17	<640
Benzo(e)pyrene	<17	<640	<17	<630	<17	<640
Benzo(a)pyrene	<17	<640	<17	<630	<17	<640
Perylene	<17	<640	<17	<630	<17	<640
Indeno(1,2,3-cd)pyrene	<17	<640	<17	<630	<17	<640
Dibenz(ah)anthracene	<17	<640	<17	<630	<17	<640
Benzo(ghi)perylene	<17	<640	<17	<630	<17	<640
Total 16 PAH's	180	6700	140	5100	220	8300
Total 19 PAH's	2700	1.0 E+05	2400	90000	3000	1.1 E+05
BaP-TEQ						
Lower Bound	0	0	0	0	0	0
Middle Bound	15	580	15	570	15	580
Upper Bound	31	1200	31	1100	31	1200

Gases	Average		Minimum		Maximum	
Sampling time	1353-	1353-1452		1452	1353-	1452
	Concentration mg/m³	Mass Rate g/min	Concentration mg/m³	Mass Rate g/min	Concentration mg/m³	Mass Rate g/min
Nitrogen oxides (as NO ²)	48	1.8	38	1.4	53	2
Carbon monoxide	<2.5	< 0.093	<2.5	< 0.093	<2.5	<0.093
	Concentration %		Concentration %		Concentration %	
Carbon dioxide	7.6		6.7		7.9	
Oxygen	10.2		9.8		11.5	

Date 3/02/2015 Client Transpacific Cleanaway

Report R000541 Stack ID Flare Outlet

Licence No. - Location Tullamarine State VIC

Ektimo Staff JS/MH/GS

Process Conditions Normal operation @ 180 sm3/hr

Reason for testing: Client requested testing to determine emissions to air

Sampling Plane Details

Sampling plane dimensions (mm) & area 800 0.503 m² Sampling port size, number & depth 4" Flange (x2) 200 mm Access & height of ports Fixed ladder 8 m Duct orientation & shape Vertical Circular Downstream disturbance Exit 2D Upstream disturbance Connection 6 D No. traverses & points sampled 2 12 Traverse method & compliance AS4323.1 Non-compliant

Comments

The discharge is assumed to be composed of dry air and moisture

All results reported on a dry basis at NTP

Stack Parameters			
Moisture content, %/v	10		
Gas molecular weight, g/g mole	28.5 (wet)	29.7 (dry)	
Gas density at NTP, kg/m³	1.27 (wet)	1.33 (dry)	
	Test 1	Test 2	
Gas Flow Parameters			
Temperature, °C	1052	1052	
Velocity at sampling plane, m/s	7.1	7.1	
Volumetric flow rate, discharge, m³/ min	210	210	
Volumetric flow rate (wet NTP), m³/ min	44	44	
Volumetric flow rate (dry NTP), m³/ min	40	40	
Mass flow rate (wet basis), kg/hour	3400	3400	
Sampling time, min	96	96	
Isokinetic rate, %	100	100	
Velocity difference, %	3	3	

Halides & Halogens	Aver	age	Test 1		Test 2	
Sampling time			1218-1354		1218-1354	
	Concentration mg/m³	Mass Rate g/min	Concentration mg/m³	Mass Rate g/min	Concentration mg/m³	Mass Rate g/min
Total particulate matter	5.9	0.23	4.8	0.19	7.1	0.28
Hydrogen fluoride	<0.026	< 0.0011	<0.019	< 0.00075	0.034	0.0014
Hydrogen chloride	<0.037	< 0.0015	<0.018	< 0.00073	0.056	0.0022
Hydrogen bromide	<0.019	< 0.00075	<0.018	< 0.00072	<0.02	<0.00078
Fluoride	<0.015	<0.00058	<0.016	< 0.00064	<0.013	<0.00053
Chlorine	0.11	0.0044	0.12	0.0047	0.1	0.0041
Bromine	<0.015	<0.00058	<0.016	< 0.00064	<0.013	< 0.00053

Non-isokinetics	Average		Test 1		Test 2	
Sampling time				1230-1305		1305
	Concentration mg/m³	Mass Rate g/min	Concentration Mass Rate mg/m³ g/min		Concentration mg/m³	Mass Rate g/min
Ammonia	0.073	0.0029	0.093	0.0037	0.054	0.0021

Date3/02/2015ClientTranspacific Cleanaway

Report R000541 Stack ID Flare Outlet
Licence No. - Location Tullarrarine State VIC

Ektimo Staff JS/MH/GS

Process Conditions Normal operation @ 180 sm3/ hr

Reason for testing: Client requested testing to determine emissions to air

Amines	Aver	age	Tes	st 1	Tes	st 2	
Sampling time			1334-	1334-1349		1334-1349	
	Concentration mg/m³	Mass Rate g/min	Concentration mg/m³	Mass Rate g/min	Concentration mg/m³	Mass Rate g/min	
n-Butylamine	<1.9	<0.074	<1.9	< 0.074	<1.9	< 0.074	
Cyclohexylamine	<1.9	< 0.074	<1.9	< 0.074	<1.9	< 0.074	
Dibutylamine	<1.9	< 0.074	<1.9	< 0.074	<1.9	< 0.074	
Diethylamine	<1.9	< 0.074	<1.9	< 0.074	<1.9	< 0.074	
Dimethylamine	<1.9	< 0.074	<1.9	< 0.074	<1.9	< 0.074	
Dipropylamine	<1.9	< 0.074	<1.9	< 0.074	<1.9	< 0.074	
n-Heptylamine	<1.9	< 0.074	<1.9	< 0.074	<1.9	< 0.074	
n-Hexylamine	<1.9	< 0.074	<1.9	< 0.074	<1.9	< 0.074	
Monoisopropylamine	<1.9	< 0.074	<1.9	< 0.074	<1.9	< 0.074	
n-Propylamine	<1.9	< 0.074	<1.9	< 0.074	<1.9	< 0.074	
Triethylamine	<3.7	<0.15	<3.7	<0.15	<3.7	<0.15	

Aldehydes & Ketones	s Average		Test1		Test 2	
Sampling time			1358-1415		1358-1415	
	Concentration mg/m³	Mass Rate g/min	Concentration mg/m³	Mass Rate g/min	Concentration mg/m³	Mass Rate g/min
Formaldehyde	<0.13	< 0.0053	<0.074	<0.003	0.19	0.0077
Acetaldehyde	0.17	0.0067	0.16	0.0065	0.18	0.007
Acrolein	<0.074	< 0.003	<0.074	< 0.003	<0.075	< 0.003
Propionaldehyde	0.26	0.011	0.17	0.0066	0.36	0.014
n-Butraldehyde	<0.22	<0.0087	<0.074	< 0.003	0.37	0.015
Valeraldehyde	<0.074	< 0.003	<0.074	< 0.003	<0.075	< 0.003
Hexanal	< 0.074	<0.003	<0.074	< 0.003	<0.075	< 0.003

Date 4/02/2015 Client Transpacific Cleanaway

Report R000541 Stack ID Flare Outlet

Licence No. - Location Tullamarine State VIC

Ektimo Staff JS/MH/GS

Process Conditions Normal operation @ 183 sm3/hr

Reason for testing: Client requested testing to determine emissions to air

Sampling Plane Details Sampling plane dimensions (mm) & area 800 0.503 m² Sampling port size, number & depth 4" Flange (x2) 200 mm Access & height of ports Fixed ladder 8 m Duct orientation & shape Vertical Circular Downstream disturbance Exit 2 D Connection 6 D Upstream disturbance No. traverses & points sampled 2 12 Traverse method & compliance AS4323.1 Satisfactory

Comments

The discharge is assumed to be composed of dry air and moisture All results reported on a dry basis at NTP

Stack Parameters			
Moisture content, %/v	10		
Gas molecular weight, g/g mole	28.5 (wet)	29.7 (dry)	
Gas density at NTP, kg/ m³	1.27 (wet)	1.33 (dry)	
	Test1	Test 2	
Gas Flow Parameters			
Temperature, °C	1014	1014	
Velocity at sampling plane, m/s	7.2	7.2	
Volumetric flow rate, discharge, m³/ min	220	220	
Volumetric flow rate (wet NTP), m³/ min	46	46	
Volumetric flow rate (dry NTP), m³/ min	41	41	
Mass flow rate (wet basis), kg/hour	3500	3500	
Sampling time, min	120	120	
Isokinetic rate, %	100	109	
Velocity difference, %	3	3	

Isokinetic	Average		Test 1		Test2	
Sampling time			1145-	1145-1347		1347
	Concentration mg/m³	Mass Rate g/min	Concentration mg/m³	Mass Rate g/min	Concentration mg/m³	Mass Rate g/min
Total particulate matter	4.2	0.18	2.6	0.11	5.8	0.24
Arsenic	< 0.0016	<0.000066	<0.0017	<0.000068	<0.0015	<0.000063
Chromium	0.033	0.0014	0.015	0.0006	0.051	0.0021
Mercury	<0.00018	<7.3 E-06	<0.00017	<6.8 E-06	<0.00019	<7.8 E-06

Date 4/02/2015 Client Transpacific Cleanaway

Report R000541 Stack ID Flare Outlet

Licence No. - Location Tullamarine State VIC

Ektimo Staff JS/MH/GS

Process Conditions Normal operation @ 183 sm3/hr

Reason for testing: Client requested testing to determine emissions to air

VOC's [TO-15]	Aver	age	Test 1		Test 2	
Sampling time			1216-	1321	1216-	1321
	Concentration mg/m³	Mass Rate g/min	Concentration mg/m³	Mass Rate g/min	Concentration mg/m³	Mass Rate g/min
Chloromethane	< 0.0012	<0.000051	<0.0011	< 0.000047	<0.0014	<0.000056
Vinyl chloride	< 0.0007	<0.000029	<0.00084	< 0.000035	<0.00056	<0.000023
Bromomethane	<0.011	<0.00044	<0.0085	< 0.00035	<0.013	<0.00053
Chloroethane	<0.00058	<0.000024	<0.00058	<0.000024	<0.00058	<0.000024
trans-1,2-Dichloroethene	<0.00087	<0.000036	<0.00087	<0.000036	<0.00087	<0.000036
1,1-Dichloroethane	<0.00088	<0.000037	<0.00088	<0.000037	<0.00088	<0.000037
cis-1,2-Dichloroethene	<0.00087	<0.000036	<0.00087	<0.000036	<0.00087	<0.000036
Bromodichloromethane	<0.0015	<0.000061	<0.0015	<0.000061	<0.0015	<0.000061
cis-1,3-Dichloropropen	<0.00099	<0.000041	<0.00099	<0.000041	<0.00099	<0.000041
trans-1,3-Dichloroprop	<0.00099	<0.000041	<0.00099	<0.000041	<0.00099	<0.000041
Dibromochloromethane	<0.0019	<0.000077	<0.0019	<0.000077	<0.0019	<0.000077
1,2-Dibromoethane	<0.0017	<0.000069	<0.0017	<0.000069	<0.0017	<0.000069
Bromoform	<0.0023	<0.000093	<0.0023	<0.000093	<0.0023	<0.000093
1,3-Dichlorobenzene	<0.002	<0.000081	<0.0013	<0.000054	<0.0026	<0.00011
1,2-Dichlorobenzene	<0.0013	< 0.000054	<0.0013	<0.000054	<0.0013	<0.000054
1,2,4-Trichlorobenzene	<0.0028	<0.00012	<0.0024	<0.0001	< 0.0032	<0.00013
Hexachlorobutadiene	<0.0023	<0.000096	<0.0023	<0.000096	<0.0023	<0.000096
Naphthalene	-	-	0.017	0.00071	<0.011	<0.00047

VOC's (speciated)	Aver	age	Test1		Test 2	
Sampling time			1308-1321		1323-1344	
	Concentration mg/m³	Mass Rate g/min	Concentration Mass Rate mg/m³ g/min		Concentration mg/m³	Mass Rate g/min
Detection limit (1)	<0.36	<0.015	<0.36	<0.015	<0.36	<0.015

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Ethanol, Isopropanol, Isobutanol, Butanol, 1-Methoxy-2-propanol, Cyclohexanol, 2-Butoxyethanol

Pentane, Hexane, Heptane, Octane, Nonane, Decane, Undecane, Dodecane, Tridecane, Tetradecane

 $Cyclo\,hexane, 2-M\,ethylhexane, 2, 3-Dimethylpentane, 3-M\,ethylhexane, Isoo ctane, M\,ethylcyclo\,hexane, alpha-Pinene, beta-Pinene, d-Limonene, 3-M\,ethylhexane, Isoo ctane, M\,ethylcyclo, Isoo c$

 $Acetone, Methyl \ ethyl \ ketone, Ethyl \ acetate, Isopropyl \ acetate, Propyl \ acetate, MIBK, 2-Hexanone, Butyl \ acetate, 1-Methoxy-2-propyl \ acetate, Propyl \ acetate,$

Cyclo hexanone, Cello solve acetate, 2-Buto xyethyl acetate, Ethyldiglycol acetate, Diacetone alco hol, Iso phorone

Benzene, Toluene, Ethylbenzene, m+p-Xylene, Styrene, o-Xylene, Iso propylbenzene, Propylbenzene, 1,3,5-Trimethylbenzene, alpha-Methylstyrene, alpha-Methyl

tert-Butylbenzene, 1,2,4-Trimethylbenzene, 1,2,3-Trimethylbenzene, m-Diethylbenzene, o-Diethylbenzene, p-Diethylbenzene, m-Diethylbenzene, n-Diethylbenzene, n-Diethylbenzen

Dichloro methane, Chloroform, 1,1,1-Trichloro ethane, 1,2-Dichloro ethane, Carbon tetrachloride, 1,1-Dichloro ethene, cis-1,2-Dichloro ethane, trans-1,2-Dichloro ethane, carbon tetrachloride, 1,1-Dichloro ethane, cis-1,2-Dichloro ethane, trans-1,2-Dichloro ethane, carbon tetrachloride, 1,1-Dichloro ethane, cis-1,2-Dichloro ethane, trans-1,2-Dichloro ethane, cis-1,2-Dichloro ethane, cis-1,2-Dic

Dichloro ethene, Trichloro ethene, Tetrachloro ethene, 1,1,2-Trichloro ethane, 1,1,2,2-Tetrachloro ethane, Chloro benzene, Fluo ro benzene

Date5/02/2015ClientTranspacific Cleanaway

 Report
 R000541
 Stack ID
 Flare Outlet

 Licence No. Location
 Tullamarine
 State VIC

EML Staff JS/MH/GS

Process Conditions Normal operation @ 180 sm3/hr

Reason for testing: Client requested testing to determine emissions to air

Sampling Plane Details Sampling plane dimensions (mm) & area 800 0.503 m² Sampling port size, number & depth 4" Flange (x2) 200 mm Access & height of ports Fixed ladder 8 m Duct orientation & shape Vertical Circular Downstream disturbance Exit 2 D Upstream disturbance Connection 6 D No. traverses & points sampled 2 12

AS4323.1

Satisfactory

Comments

The discharge is assumed to be composed of dry air and moisture

All results reported on a dry basis at NTP

Traverse method & compliance

Stack Parameters			
Moisture content, %/v	10		
Gas molecular weight, g/g mole	28.5 (wet)	29.7 (dry)	
Gas density at NTP, kg/ m³	1.27 (wet)	1.33 (dry)	
	Test 1	Test 2	
Gas Flow Parameters			
Temperature, °C	1060	1060	
Velocity at sampling plane, m/s	6.4	6.4	
Volumetric flow rate, discharge, m³/ min	190	190	
Volumetric flow rate (wet NTP), m³/ min	40	40	
Volumetric flow rate (dry NTP), m³/ min	36	36	
Mass flow rate (wet basis), kg/ hour	3000	3000	
Sampling time, min	96	96	
Isokinetic rate, %	101	107	
Velocity difference, %	2	2	

Isokinetic		Average		Test 1		Test 2	
	Sampling time			1236-	1408	1236-	1408
		Concentration mg/m³	Mass Rate g/min	Concentration mg/m³	Mass Rate g/min	Concentration mg/m³	Mass Rate g/min
Sulfuric acid		1.8	0.065	2.1	0.074	1.6	0.057
Sulfur dioxide		-	-	<0.2	< 0.0072	1.7	0.06

Flare Outlet

Date 31/03/2015 Client Transpacific Cleanaway

Licence No. - Location Tullamarine State VIC

Stack ID

Ektimo Staff GS

Report

Process Conditions Normal operation @ 190 sm3/hr

Reason for testing: Client requested testing to determine emissions to air

Sampling Plane Details

R000541

Sampling plane dimensions (mm) & area 800 0.503 m² Sampling port size, number & depth 4" Flange (x2) 200 mm Access & height of ports Fixed ladder 8 m Duct orientation & shape Vertical Circular Downstream disturbance Exit 2 D Upstream disturbance Connection 6 D No. traverses & points sampled 2 12

Traverse method & compliance AS4323.1 Satisfactory

10

Comments

The discharge is assumed to be composed of dry air and moisture

All results reported on a dry basis at NTP

Stack Parameters Moisture content, %/v

Gas molecular weight, g/g mole 28.5 (wet) 29.7 (dry)
Gas density at NTP, kg/m³ 1.27 (wet) 1.33 (dry)

Gas Flow Parameters

Temperature, °C 996
Velocity at sampling plane, m's 7.7
Volumetric flow rate, discharge, m³/ min 230
Volumetric flow rate (wet NTP), m³/ min 50
Volumetric flow rate (dry NTP), m³/ min 45
Mass flow rate (wet basis), kg/ hour 3800
Velocity difference, % 3

VOC's C1-C4	Aver	age Test 1		Test 2		
Sampling time			1152-1	1207	1207-	1222
	Concentration mg/m³	Mass Rate g/min	Concentration mg/m³	Mass Rate g/min	Concentration mg/m³	Mass Rate g/min
Methane	2500	110	3800	170	1200	55

Date31/03/2015ClientTranspacific Cleanaway

Report R000541 Stack ID Flare Outlet

Licence No. - Location Tullamarine State VIC

Ektimo Staff GS

Process Conditions Normal operation @ 190 sm3/hr

Reason for testing: Client requested testing to determine emissions to air

Sampling Plane Details

Sampling plane dimensions (mm) & area 800 0.503 m² Sampling port size, number & depth 4" Flange (x2) 200 mm Access & height of ports Fixed ladder 8 m Duct orientation & shape Vertical Circular Downstream disturbance Exit 2D Upstream disturbance Connection 6 D No. traverses & points sampled 2 12 Traverse method & compliance AS4323.1 Satisfactory

Comments

The discharge is assumed to be composed of dry air and moisture

All results reported on a dry basis at NTP

Mass flow rate (wet basis), kg/hour

Velocity difference, %

Stack Parameters			
Moisture content, %v/v	10		
Gas molecular weight, g/g mole	28.5 (wet)	29.7 (dry)	
Gas density at NTP, kg/m³	1.27 (wet)	1.33 (dry)	
Gas Flow Parameters			
Temperature, °C	996		
Velocity at sampling plane, m/s	7.7		
Volumetric flow rate, discharge, m³/ min	230		
Volumetric flow rate (wet NTP), m³/ min	50		
Volumetric flow rate (dry NTP), m³/ min	45		

3800

3

Reduced Sulfur Gases	Aver	age	Test1		Test 2	
Sampling time			1152-1207		1207-1222	
	Concentration mg/m³	Mass Rate g/min	Concentration mg/m³	Mass Rate g/min	Concentration mg/m³	Mass Rate g/min
Carbonyl sulfide	<0.27	<0.012	<0.27	<0.012	<0.27	<0.012
Methyl mercaptan	<0.21	< 0.0097	<0.21	< 0.0097	<0.21	< 0.0097
Ethyl mercaptan	<0.28	<0.013	<0.28	<0.013	<0.28	<0.013
Dimethyl sulfide	<0.28	<0.013	<0.28	<0.013	<0.28	<0.013
Propyl mercaptan	<0.34	< 0.015	<0.34	<0.015	<0.34	< 0.015
Butyl mercaptan	<0.4	<0.018	<0.4	<0.018	<0.4	<0.018
Hydrogen sulfide	<0.15	< 0.0069	<0.15	< 0.0069	<0.15	< 0.0069

Inlet Line - Test Results

Date 4/02/2015 Client Transpacific Cleanaway

Report R000541 Stack ID Inlet Line
Licence No. - Location Tullamarine State VIC

Ektimo Staff JS/MH/GS

Process Conditions Normal operation @ 180 sm3/hr

Reason for testing: Client requested testing to determine emissions to air

Sampling Plane Details

Sampling port size, number & depth

Access & height of ports

Duct orientation & shape

Downstream disturbance

Upstream disturbance

Standpipe with valve 1" ID (x1)

Ground level

Horizontal

2 D

Upstream disturbance

Bend 2 D

Comments

Inlet Line settings

1) both valves opened fully at 1000 hrs to equilibrate sample line, vacuum about -3700 Pa

2) both valves to just open before testing, vacuum about -2700 Pa

VOCs [TO-15 Canisters]	Average	Test 1	Test 2
Sampling time		1216-1321	1216-1321
	Concentration	Concentration	Concentration
	mg/m³	mg/m³	mg/m³
Chloromethane	<0.068	<0.068	<0.068
Vinyl chloride	2.6	2.8	2.4
Bromomethane	<0.085	<0.085	<0.085
Chloroethane	0.27	0.29	0.26
trans-1,2-Dichloroethene	<0.043	<0.043	<0.043
1,1-Dichloroethane	0.6	0.66	0.53
cis-1,2-Dichloroethene	2.2	2.5	2
Bromodichloromethane	<0.037	<0.037	<0.037
cis-1,3-Dichloropropen	<0.025	<0.025	<0.025
trans-1,3-Dichloroprop	<0.025	<0.025	<0.025
Dibromochloromethane	<0.046	<0.046	<0.046
1,2-Dibromoethane	<0.042	<0.042	<0.042
Bromoform	<0.056	<0.056	<0.056
1,3-Dichlorobenzene	<0.033	<0.033	<0.033
1,2-Dichlorobenzene	<0.049	<0.066	<0.033
1,2,4-Trichlorobenzene	<0.073	<0.081	<0.065
Hexachlorobutadiene	<0.058	<0.058	<0.058
Naphthalene	<0.4	0.74	<0.057

VOC's (speciated)	Average	Test 1	Test 2
Sampling time		1308-1321	1323-1344
	Concentration mg/m³	Concentration mg/m³	Concentration mg/m³
Detection limit	<0.53	<0.53	<0.53

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Ethanol, Isopropanol, Isobutanol, Butanol, 1-Methoxy-2-propanol, Cyclohexanol, 2-Butoxyethanol

Pentane, Hexane, Heptane, Octane, Nonane, Decane, Undecane, Dodecane, Tridecane, Tetradecane, Tetradecane,

Cyclo hexane, 2-M ethylhexane, 2,3-Dimethylpentane, 3-M ethylhexane, Iso octane, M ethylcyclo hexane, alpha-Pinene, beta-Pinene, d-Limonene, 3-Carene Acetone, M ethyl ethyl ketone, Ethyl acetate, Isopropyl acetate, Propyl acetate, M IBK, 2-Hexanone, B utyl acetate, 1-M ethoxy-2-propyl acetate,

 $Cyclo\,hexano\,ne, Cello\,so\,lve\,acetate, 2-B\,uto\,xyethyl\,acetate, Ethyldiglyco\,l\,acetate, Diaceto\,ne\,alco\,ho\,l, Iso\,pho\,ro\,ne$

Benzene, Toluene, Ethylbenzene, m-p-Xylene, Styrene, o-Xylene, Isopropylbenzene, Propylbenzene, 1,3,5-Trimethylbenzene, alpha-Methylstyrene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, 1,2,3-Trimethylbenzene, m-Diethylbenzene, o-Diethylbenzene, p-Diethylbenzene

Dichloromethane, Chloroform, 1,1,1-Trichloroethane, 1,2-Dichloroethane, Carbon tetrachloride, 1,1-Dichloroethene, cis-1,2-Dichloroethene, trans-1,2-Dichloroethene, Tetrachloroethene, Tetrachloroethene, 1,1,2-Trichloroethane, 1,1,2-Trichloroethane, Chlorobenzene, Fluorobenzene

Date 31/03/2015 Client Transpacific Cleanaway

Report R000541 Stack ID Inlet Line
Licence No. - Location Tullamarine State VIC

Ektimo Staff GS

Process Conditions Normal operation @ 190 sm3/hr

Reason for testing: Client requested testing to determine emissions to air

Sampling Plane Details

Sampling port size, number & depth Standpipe with valve 1" ID (x1)

Access & height of ports Ground level

Duct orientation & shape Horizontal

Downstream disturbance Bend 2 D

Upstream disturbance Bend 2 D

VOC's C1-C4	Average	Test 1	Test2
Sampling time		1104-1119	1119-1134
	Concentration mg/m³	Concentration mg/m³	Concentration mg/m³
Methane	3.5 E+05	3.5 E+05	3.5 E+05

 Date
 31/03/2015
 Client
 Transpacific Cleanaway

Report R000541 Stack ID Inlet Line
Licence No. - Location Tullamarine State VIC

Ektimo Staff GS

Process Conditions Normal operation @ 190 sm3/hr

Reason for testing: Client requested testing to determine emissions to air

Sampling Plane Details

Sampling port size, number & depth Standpipe with valve 1" ID (x1)

Access & height of ports Ground level

Duct orientation & shape Horizontal

Downstream disturbance Bend 2 D

Upstream disturbance Bend 2 D

Reduced Sulfur Gases	Average	Test 1	Test 2
Sampling time		1104-1119	1119-1134
	Concentration mg/m³	Concentration mg/m³	Concentration mg/m³
Carbonyl sulfide	<0.27	<0.27	<0.27
Methyl mercaptan	<0.21	<0.21	<0.21
Ethyl mercaptan	<0.28	<0.28	<0.28
Dimethyl sulfide	<0.28	<0.28	<0.28
Propyl mercaptan	<0.34	<0.34	<0.34
Butyl mercaptan	<0.4	<0.4	<0.4
Hydrogen sulfide	24	24	23

3 PLANT OPERATING CONDITIONS

Unless otherwise stated, the plant operating conditions were normal at the time of testing. See Transpacific Cleanaway Landfills Ltd (Tullamarine)'s records for complete process conditions.

4 TEST METHODS

Unless otherwise stated, the following methods meet the requirements of the Victorian Environment Protection Authority (as specified in *A Guide to Sampling and Analysis of Air Emissions and Air Quality, December 2002*).

All sampling and analysis was performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request

Test Method Table Parameter	Test Method	Method Detection Limit	Uncertainty*	NATA Ac	credited
				Sampling	Analysis
Sample Plane Criteria	AS 4323.1	-	-	✓	NA
Traverse Points	USEPA 1	-	-	✓	NA
Velocity	Ektimo (EML Air) 100	2ms ⁻¹	7%	✓	NA
Temperature	Ektimo (EML Air) 100	0°C	2%	✓	NA
Flow rate	Ektimo (EML Air) 100	Location specific	8%	✓	NA
Moisture	Ektimo (EML Air) 105	0.4%	6%	✓	✓
Total particulate matter	AS 4323.2	1mg/m³	5%	✓	
Sulfur trioxide and/or sulfuric acid mists and sulfur dioxide	USEPA 8	0.01mg/m³	16%	✓	✓
Dioxins and Furans (PCDD's and PCDF's)	USEPA SW-846 0023A	Analyte specific	16%	✓	√3
Polycyclic aromatic hydrocarbons (PAH's)	USEPA SW-846 0010	Analyte specific	21%	✓	√ 4
Total (gaseous and particulate) Metals	EML Air 280	Analyte specific	15%	✓	√ 1
Carbon monoxide	EML Air 200	2.5mg/m³	12%	✓	✓
Carbon dioxide	EML Air 200	0.1%	13%	✓	✓
Oxygen	USEPA 3A	0.1%	13%	✓	✓
Nitrogen oxides	USEPA 7E	4mg/m³	12%	✓	✓
C ₁ -C ₄ Hydrocarbons	EML Air 340	Analyte specific	19%	✓	✓
Ammonia and ammonium compounds	EML Air 260	0.002mg/m³	18%	✓	√2
Speciated volatile organic compounds	EML Air 344	0.33mg/m ³	19%	✓	✓
Hydrogen halide and halide emissions	USEPA 26A	10mg/m3	14%	✓	✓

^{*} Uncertainty values cited in this table are calculated at the 95% confidence level (coverage factor = 2)

^{1.} Analysis was performed by Envirolab, NATA accreditation number 2901. Results were reported to Ektimo on26 February 2015 in report number 123418.

Analysis was performed by Envirolab, NATA accreditation number 2901. Results were reported to Ektimo on 26 February 2015 in report number 123418.

Analysis was performed by Australian Government National Measurement Institute, NATA accreditation number 198. Results were reported to Ektimo on 3 March 2015 in report number DAU15_035.

Analysis was performed by Australian Government National Measurement Institute, NATA accreditation number 198. Results were reported to Ektimo on 16 March 2015 in report number ORG15_085.

5 QUALITY ASSURANCE/ QUALITY CONTROL INFORMATION

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.asn.au.

Ektimo is accredited by NATA (National Association of Testing Authorities) to Australian Standard 17025 – General Requirements for the Competence of Testing and Calibration Laboratories. Australian Standard 17025 requires that a laboratory have a quality system similar to ISO 9002. More importantly it also requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Assurance Manager.

NATA is a member of APLAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with both of these organisations, NATA accreditation is recognised world –wide.

A formal Quality Control program is in place at Ektimo to monitor analyses performed in the laboratory and sampling conducted in the field. The program is designed to check where appropriate; the sampling reproducibility, analytical method, accuracy, precision and the performance of the analyst. The Laboratory Manager is responsible for the administration and maintenance of this program.

6 DEFINITIONS

The following symbols and abbreviations may be used in this test report:

NTP Normal temperature and pressure. Gas volumes and concentrations are expressed on a dry

basis at 0°C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa,

unless otherwise specified.

Disturbance A flow obstruction or instability in the direction of the flow which may impede accurate flow

determination. This includes centrifugal fans, axial fans, partially closed or closed dampers,

louvres, bends, connections, junctions, direction changes or changes in pipe diameter.

VOC Any chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C

or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon

monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.

TOC The sum of all compounds of carbon which contain at least one carbon to carbon bond, plus

methane and its derivatives.

OU The number of odour units per unit of volume. The numerical value of the odour

concentration is equal to the number of dilutions to arrive at the odour threshold (50% panel

response).

PM_{2.5} Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less

than approximately 2.5 microns (µm).

PM₁₀ Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less

than approximately 10 microns (µm).

BSP British standard pipe

NT Not tested or results not required

NA Not applicable

D₅₀ 'Cut size' of a cyclone defined as the particle diameter at which the cyclone achieves a 50%

collection efficiency ie. half of the particles are retained by the cyclone and half are not and pass through it to the next stage. The D_{50} method simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles with a diameter equal to or

greater than the D₅₀ of that cyclone and less than the D₅₀ of the preceding cyclone.

D Duct diameter or equivalent duct diameter for rectangular ducts

< Less than > Greater than

≥ Greater than or equal to

~ Approximately

CEM Continuous Emission Monitoring
CEMS Continuous Emission Monitoring System
DER WA Department of Environment & Regulation

DECC Department of Environment & Climate Change (NSW)

EPA Environment Protection Authority
FTIR Fourier Transform Infra Red

NATA National Association of Testing Authorities

RATA Relative Accuracy Test Audit

AS Australian Standard

USEPA United States Environmental Protection Agency
Vic EPA Victorian Environment Protection Authority

ISC Intersociety committee, Methods of Air Sampling and Analysis

ISO International Organisation for Standardisation

APHA American public health association, Standard Methods for the Examination of Water and

Waste Water

CARB Californian Air Resources Board

TM Test Method

OM Other approved method CTM Conditional test method

VDI Verein Deutscher Ingenieure (Association of German Engineers)

NIOSH National Institute of Occupational Safety and Health

XRD X-ray Diffractometry

ATTACHMENT C: LIMITATIONS

LIMITATIONS

The findings and conclusions contained within this Flare Emission Testing Report are made following a review of information, reports, correspondence and data previously reported by third parties. Kleinfelder does not provide guarantees or assurances regarding the accuracy and validity of information and data obtained by third parties in previously commissioned investigations. The conclusions presented in this report are relevant to the conditions of the site and the state of legislation currently enacted as at the date of this report.

Kleinfelder has used a degree of skill and care ordinarily exercised by reputable members of our profession practicing in the same or similar locality.

Kleinfelder does not make any representation or warranty that the conclusions in this report will be applicable in the future as there may be changes in the condition of the site, applicable legislation or other factors that would affect the conclusions contained in this report.

This report has been prepared exclusively for use by Transpacific Cleanaway Ltd. This report cannot be reproduced without the written authorisation of Kleinfelder Australia Pty Ltd and then can only be reproduced in its entirety.